Что такое быстрое прототипирование?
Чтобы сохранить и увеличить конкурентоспособность, производители стремятся выводить продукцию на рынок в минимальные сроки. Как достичь этой цели? Один из способов – сократить цикл разработки продукта.
Прототипирование, будучи ключевым этапом разработки, – процесс достаточно трудоемкий: чтобы понять, какое решение будет наиболее эффективным, потребуется длительный этап проектирования и доработок с выполнением ряда итераций.
Для достижения наилучших результатов эту стадию нужно завершать как можно раньше. Быстрое прототипирование, то есть создание прототипов посредством 3D-печати, позволяет существенно сократить цикл разработки и сэкономить ресурсы.
3D-технологии помогают сократить весь процесс, начиная с формулировки идеи до создания физического объекта, до нескольких часов. Быстрое прототипирование дает возможность улучшить и экономические показатели: экономится не только время на разработку, но и трудовые затраты.
(pdf) rapid prototyping and manufacturing: a review of current technologies
12 Copyright © 2009 by ASME
This process was developed for fabrication of metallic parts
from foils. The process uses a high frequency ultrasonic
energy source to induce combined static and oscillating shear
forces within metal foils to produce solid-state bonds and
build up a near-net shape part, which is then machined to its
final dimensions using an integrated, three-axis CNC milling
machine. UC combines the advantages of additive and
subtractive fabrication approaches allowing complex parts to
be formed with high-dimensional accuracy and surface finish,
including objects with complex internal passageways, objects
made up of multiple materials, and objects integrated with
wiring, fiber optics, sensors, and instruments, [41].
5 CONCLUSION
RP&M technologies have considerably evolved from their
origin, more than 25 years ago. Several new RP&M systems
have been proposed during these years. RP&M research has
been focused on the development of systems to support new
materials, e.g. organism processes, systems to support micro
and nano fabrication, systems to fabricate end-user parts,
systems based on new fabrication methods, and systems
combining different RP&M techniques. Although there are
many new proposed systems, few of them are commercially
available; most of them are in development or have been
proposed without commercial success. However, the original
goal still remains as a key factor; reduce design and
manufacturing costs and leads times to increase
competitiveness.
ACKNOWLEDGMENTS
The first author would like to thank the PROMEP
program from SEP in Mexico for the support provided to this
project.
REFERENCES
[1]Editorial, 2002, “Rapid technologies: solutions for today
and tomorrow”, Computer-Aided Design, Vol. 34, pp.
679-682, Elsevier.
[2]Yan Xue, Gu P., A Review of rapid prototyping
technologies and systems, Computer-Aided Design, Vol.
28, No. 4, pp. 307-318, 1996.
[3]Pham D.T., Gault R.S., A comparison of rapid
prototyping technologies, International Journal of
Machine Tools & Manufacture, 38, pp. 1257-1287, 1998.
[4]Karapatis N.P., van Griethuysen, GlardonR., Direct rapid
tooling: a review of current research, Rapid prototyping
journal, 4, 2, pp. 77-89, 1998.
[5]Upcraft Steve, Fletcher Richard, The rapid prototyping
technologies, Assembly automation, 23, 4, pp. 318-330,
2003.
[6]Medellin H., Lim T., Corney J., Ritchie J.M., Davies
J.B.C., Automatic subdivision and refinement of large
components for rapid prototyping production, Journal of
Computing and Information Science in Engineering, Vol.
7, No. 3, pp. 249-258, 2007.
[7]Dutta D., Brinz F.B., Rosen D., Weiss L., Layer
manufacturing: current status and future trends, Journal
of Computing and Information Science in Engineering,
Vol. 1, No. 1, pp. 60-71, 2001.
[8]Steve Upcraft and Richard Fletcher, The rapid
prototyping Technologies, Assembly Automation,
Volume 23, Number 4, pp. 318–330, 2003
[9]Behrokh Khoshnevis, Melanie P. Bodiford, Kevin H.
Burks, Ed Ethridge, and Dennis Tucker, Won Kim,
Houssam Toutanji, Michael R. Fiske, Lunar Contour
Crafting – A Novel Technique for ISRUBased Habitat
Development, American Institute of Aeronautics and
Astronautics Conference, pp. 1-12, 2005.
[10]Yong-Ak Songa, Sehyung Park, Doosun Choi, Haesung
Jee, 3D welding and milling: Part I–a direct approach for
freeform fabrication of metallic prototypes, International
Journal of Machine Tools & Manufacture 45, pp. 1057–
1062, 2005
[11]
Zhongzhong Chen, Dichen Li, Bingheng Lu, Yiping
Tang, Minglin Sun and Zhen Wang, Fabrication of
artificial bioactive bone using rapid prototyping, Rapid
Prototyping Journal Volume 10 · Number 5, pp. 327–
333, 2004
[12]Sanjay B. Joshi, Richard A. Wysk, Matthew Frank,
CNC-RP: A Technique for Using CNC Machining as a
Rapid Prototyping Tool in Product/Process
Development, Department of Industrial and
Manufacturing Engineering, The Pennsylvania State
University, pp. 1-5, 2002.
[13]Cong Bang Pham, Kah Fai Leong, Tze Chiun Lim and
Kerm Sin Chian, Rapid freeze prototyping technique in
bio-plotters for tissue scaffold fabrication, Rapid
Prototyping Journal 14/4, pp.246–253, 2008
[14]Yan, Y., Wu, R. and Zhang, Biomaterial forming
research using RP technology, Rapid Prototyping
Journal, Vol. 9, pp. 142-9. 2003
[15]Zhuo Xiong, Yongnian Yan, Renji Zhang and Xiaohong
Wang, Organism manufacturing engineering based on
rapid prototyping principles, Rapid Prototyping Journal,
11/3, pp.160–166, 2005
[16]Mironv, V., Boland, T. and Trusk, T., Organ
printing:computer-aided jet-based 3D tissue engineering,
Trends in Biotechnology, Vol. 21 , pp. 157-218, 2003
[17]Xiong, Z., Yan, Y.N., Wang, S., Zhang, R. and Zhang,
C., Fabrication of porous scaffolds for bone tissue
engineering via low-temperature deposition, Scripta
Materialia, Vol. 1, pp. 771-777.2002
[18]N. Hopkinson, R.J.M. Hague and P.M. Dickens, Rapid
Manufacturing An Industrial Revolution for the Digital
Age, John Wiley & Sons,Vol. 1, pp. 55-79, 2006.
[19]D.T. Pham, R.S. Gault, A comparison of rapid
prototyping technologies, International Journal of
Machine Tool & Manufacture 38, Vol 1, pp.1257-1287,
1998.
[20]T. Hanemann, W. Bauer, R. Knitter, and P. Woias, Rapid
Prototyping and Rapid Tooling Techniques for the
Manufacturing of Silicon, Polymer, Metal and Ceramic
Microdevices, 1Forschungszentrum Karlsruhe, Institut f.
Materialforschung III,vol.1, pp. 187-218,
[21]Frank Liou, Kevin Slattery, Mary Kinsella, Wright-
Patterson, Joseph Newkirk, Hsin-Nan Chou, Robert
Landers, Applications of a hybrid manufacturing process
for fabrication of metallic structures, Rapid Prototyping
Journal 13/4, pp. 236–244, 2007.
§
(pdf) rapid prototyping journal
patient-specific temporomandibular joint implant”,
Computer Methods in Biomechanics and Biomedical
Engineering, Vol. 15 No. 4, pp. 363-370.
Garcia, M. (2009), “Surgical treatment of interphalangeal
joint arthritis”, Medscape, 30 September.
Giannatsis, J. and Dedoussis, V. (2009), “Additive fabrication
technologies applied to medicine and health care: a review”,
International Journal of Advanced Manufacturing Technology,
Vol. 40 Nos 1/2, pp. 116-127.
Hilker, A., Miehlke, R.-K. and Schmidt, K. (2007),
“Prosthetics of metacarpophalangeal joints”, Z Rheumatol,
Vol. 66 No. 5, pp. 366-375.
Hogan, C.J. and Nunley, J.A. (2006), “Post traumatic
proximal interphalangeal joint flexion contractures”,
Journal of the American Academy of Orthopaedic Surgeons,
Vol. 14 No. 9, pp. 524-533.
Knahr, K. (2020), “Total hip arthroplasty”, Effort Reference in
Orthopaedics and Traumatology, Springer, pp. 4-22.
Klarlund, M., Ostergaard, M., Jensen, K., Madsen, J., Skjodt,
H. and the TIRA group (2000), “Magnetic resonance
imaging, radiography, and scintigraphy of the finger joints:
one year follow up of patients with early arthritis”, Annals of
the Rheumatic Diseases, Vol. 59 No. 7, pp. 521-528.
Margareta, N. and Frankel, V.H. (2020), Basic Biomechanics
Of The Musculoskeletal System, 4th ed., Wolters Kluwer/
Lippincott Williams & Wilkins, Philadelphia, PA.
Materialise (2020), “Biomedical software and solutions for
engineering on Anatomy”, available at: http://biomedical.
materialise.com/mimics
MedicineNet (2020), “Rheumatoid Arthritis (RA)”, available
at: www.medicinenet.come/rheumatoid_arthritis/article.
htm
Murr, L.E., Gaytan, S.M., Martinez, E., Medina, F. and
Wicker, R.B. (2020), “Next generation orthopaedic
implants by additive manufacturing using electron beam
melting”, International Journal of Biomaterials, Vol. 2 No. 3,
pp. 1-14.
Stewart, N., McQueen, F. and Crabbe, J. (2001), “MRI of the
wrist: a pictorial essay”, Australasian Radiology, Vol. 45
No. 3, pp. 268-273.
Thomsen, P., Malmström, J., Emanuelsson, L., Rene, M. and
Snis, A. (2009), “Electron beam-melted, free-form-
fabricated titanium alloy implants: material surface
characterization and early bone response in rabbits”,
Journal of Biomedical Materials Research Part B: Applied
Biomaterials, Vol. 90 No. 1, pp. 35-44.
Palmquist, A., Lindberg, F., Emanuelsson, L., Brånemark,
R., Engqvist, H. and Thomsen, P. (2020), “Biomechanical,
histological and ultrastructural analyses of laser micro- and
nano-structured titanium alloy implants: a study in rabbit”,
Journal of Biomedical Materials Research, Vol. 92A No. 4,
pp. 1476-1486.
Parthasarathy, J. (2009), Design, Analysis, and Fabrication of
Porous Titanium Implants Using Electron Beam Melting for
Craniofacial Applications, PhD Dissertation, University of
Oklahoma, Norman.
Peck, J.N. (2020), “Weight-bearing surfaces”, in Peck, J.N.
and Marcellin-Little, D.J. (Eds), Advances in Small Animal
Total Joint Replacement, John Wiley & Sons, West Sussex.
Takigawa, S., Meletiou, S., Sauerbier, M. and Cooney, W.P.
(2004), “Long-term assessment of Swanson implant
arthroplasty in the proximal interphalangeal joint of the
hand”, The Journal of Hand Surgery, Vol. 29 No. 5,
pp. 785-795.
Steven, K. (2004), The UHMWPE Handbook: Ultra-High
Molecular Weight Polyethylene in Total Joint Replacement,
1st ed., Elsevier Academic Press, San Diego, CA.
Further reading
Herren, D.B., Schindele, S., Golden, J. and Simon, B.R.
(2006), “Problematic bone fixation with pyrocarbon
implants in proximal interphalangeal joint replacement:
short-term results”, Journal of Hand Surgery (British and
European Volume), Vol. 31 No. 6, pp. 643-651.
Swanson, A.B. (1972), “Flexible implant arthroplasty for
arthritic finger joints rationale, technique, and results of
treatment”, The Journal of Bone & Joint Surgery, Vol. 54
No. 3, pp. 435-544.
Corresponding author
Emad Abouel Nasr can be contacted at: eabdelghany@ksu.
edu.sa
For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com
Rapid prototyping technique
Emad Abouel Nasr et al.
Rapid Prototyping Journal
Volume 21 · Number 4 · 2020 · 449–460
460
Downloaded by Mr Abdulsalam Altamimi At 09:12 08 August 2020 (PT)
§
(pdf) rapid prototyping technology and its applications
SUMMARY
This paperprovidesanoverviewof RPtechnologyin briefandemphasizesontheir abilityto
shorten the product design and developmentprocess. Classification of RP processes and details
of fewimportantprocessesis given.Thedescription ofvariousstagesof datapreparationand
model building has been presented. An attempt has been made to include some important factors
tobe consideredbefore startingpart deposition forproper utilizationof potentials ofRP
processes.
REFERENCES
•Chua, C.K., Leong, K.F. (2000) Rapid Prototyping: Principles andApplications in
Manufacturing, World Scientific.
•Gebhardt, A., (2003) Rapid Prototyping, Hanser Gardner Publications, Inc., Cincinnati.
•Pandey, P.M., Reddy N.V., Dhande, S.G. (2003a) Slicing Procedures in Layered
Manufacturing: A Review, Rapid Prototyping Journal, 9(5), pp. 274-288.
•Pandey, P.M., Reddy, N.V., Dhande, S.G. (2003b) Real Time Adaptive Slicing for Fused
Deposition Modelling, InternationalJournal of MachineTools and Manufacture,43(1),
pp 61-71.
•Pandey, P.M., Reddy, N.V., Dhande, S.G. (2004a) Part Deposition Orientation Studies in
LayeredManufacturing,ProceedingofInternationalConferenceonAdvanced
Manufacturing Technology, pp. 907-912.
•Pandey, P.M., Thrimurthullu, K., Reddy, N.V. (2004b) Optimal Part Deposition
Orientation in FDM using Multi-Criteria GA, International Journal of Production
Research, 42(19), pp. 4069-4089.
•Thrimurthullu, K.,Pandey, P.M.,Reddy,N.V. (2004)PartDepositionOrientationin
FusedDepositionModeling,InternationalJournalofMachineTools andManufacture,
2004, 44, pp. 585-594.
•Williams, R.E., Komaragiri., S.N., Melton, V.L., Bishu, R.R. (1996) Investigation ofthe
Effect ofVariousBuildMethods onthePerformance ofRapidPrototyping
(Stereolithography), Journal of Materials Processing Technology, 61, (1-2), pp. 173-178.
§
(pdf) rapid prototyping technology: applications and benefits for rapid product development
9.Conclusion
Sweepingchangesinmanufacturingpracticeshave
takenplaceintheEightiesandacceleratewithadded
momentum in the Nineties.Shorter product life cycle,
betterqualityandreliability,andeliminationof
wasteshavebecomeindustrystandards.More
importantly,greateremphasisisnowputonnew
productdevelopmentandtime-to-market.Without
doubts, products withoutstanding quality, satisfying a
marketniche,arepre-requisitesforasuccessful
company.
Veryfewtechnologieshaveofferedasmuchas
RPTinthelastfewyears.Componentscannowbe
producedinafractionofthetimethatwasrequired
previouslywiththeaddedbene®tsofreducedcosts
andmoredesigniterations.Designershavebeen
releasedfromold constraints withnewtoolsfromthe
arrayRPT.Managersmusttakeonnewbusiness
practices,designersmustunderstandthepowerat
their®ngertips,processengineersneedknowofthe
newprocessroutesandmarketingpersonnelmustbe
awareoftheirnewfoundabilitytoreactquicklyto
market changes.The global marketplace isimpatient,
price-sensitive,andintolerant ofcarelessness.Weare
requiredtomoveswiftly,bothtoeliminatecoststhat
donot addvalue and todeliver unprecedentedquality.
Thesearethenewrulesofsurvival.
References
Burns,M.(1993)AutomatedFabricationÐImproving
productivityinmanufacturing,1stedition.PTR
PrenticeHall,NewJersey.
Charney, C.(1990)TimetoMarket:Reducing Product lead
time,SocietyofManufacturingEngineers,Dearborn,
MI.
EARP.(1995a)Why?When?How?TouseRPTinthe
productdevelopmentprocess,AGuidefromEARPÐ
EuropeanActiononRapidPrototyping,Brite/Euram
BE-6075R&DProject.
EARP.(1995b)SpecialMedicalEdition.EARPÐ
NewsletterNo.5,Ed.BentMieritz,Danish
TechnologicalInstitute,AarhusC,Denmark.
Halliday,I. (1995)Gettingthe BusinessBene®ts fromRapid
Prototyping. Proc.4th EuropeanConference on Rapid
PrototypingandManufacturing,pp.297±306.
Iuliano, L.,Gatto, A.and DeFillipi,A.(1995)Metallization
and Rapid Tooling. Proc. 4thEuropean Conference on
RapidPrototypingandManufacturing,pp.261±277.
Jacobs,P.F.(1992)RapidPrototypingandManufacturing:
FundamentalsofStereolithography,1stedition,
SocietyofManufacturingEngineers.Dearborn.
Jacobs,P.F.(1993)Stereolithography1993:EpoxyResins
ImprovedAccuracy andInvestment Casting.Proc. 2nd
EuropeanConferenceonRapidPrototyping&
Manufacturing,pp.95±111.
Jacobs,P.F.(1995),QuickCast
TM
1.1&RapidTooling.
Proc.4thEuropeanConferenceonRapidPrototyping
andManufacturing,pp.1±25.
Jensen,K.L.(1993)InstantMedicoModels.EARPÐ
NewsletterNo.2,Ed.BentMieritz,Danish
TechnologicalInstitute,AarhusC,Denmark.
Josip,S.(1994)StereolithographyBasedOperation
PlanninginMaxillofacialReconstructionSurgery.
EARPÐNewsletterNo.3,Ed.BentMieritz,Danish
TechnologicalInstitute,AarhusC,Denmark.
Luck,T., Baumann,T.andBaraldi,U.(1995)Comparison of
DownstreamTechniquesforFunctionalandTechnical
PrototypesÐFast Tooling with RP. Proc. 4thEuropean
ConferenceonRapidPrototypingandManufacturing,
pp.247±261.
McAloon,K.,McLean,C.andVancrean, W.(1993)Report
fromtheInternationalWorkshoponStereolithography
inMedicine.EARPÐNewsletter),No.2,Ed.Bent
Mieritz,DanishTechnologicalInstitute,AarhusC,
Denmark.
McAloon,K.(1994)ReportfromtheInternational
WorkshoponStereolithographyinMedicine.EARPÐ
Newsletter,No.3,Ed.BentMieritz,Danish
TechnologicalInstitute,AarhusC,Denmark.
Murphy,M.L.(1995)RapidPrototypingByLaserSurface
Cladding,PhDThesis,UniversityofLiverpool.
Onuh,S.O.(1996)AnExperimentalStudyon
StereolithographyProductQuality,PhDThesis,
UniversityofLiverpool.
Prioleau,F.R.(1991)ApplicationsofStereolithographyin
InvestmentCasting,Proc.2ndInternational
ConferenceonRapidPrototyping,Dayton,Ohio.
1991,pp.149±151.
Suh,Y.S.andWozny,M.J.(1994)AdaptiveSlicingof
SolidFreeformFabricationProcesses.Proc.Solid
FreeformFabricationSymposium,Austin,USA,
pp.404±411.
Thompson,G. A.and Pridham,M. S.(1995) LaserForming.
Proc.4thEuropeanConferenceonRapidPrototyping
andManufacturing,pp.137±147.
Tromans,G.andWimpenny,D.(1995)Rapid
Manufacturing.Proc.4thEuropeanConferenceon
RapidPrototypingandManufacturing,pp.27±41.
Rapidprototypingtechnology
311
§
Advantages and disadvantages of rapid prototyping
Like any manufacturing process or design stage, prototyping and rapid prototyping have their own pros and cons.
Fidelity types

Is rapid prototyping the same as 3d printing?
The simple answer is “No”. In modern-day product development process, rapid prototyping is commonly used alongside terms like “3D printing” and “additive manufacturing” mainly because 3D printing first came into prominence as a way of making prototypes quickly (Read more on the history of 3D printing).
But the 7 types of additive manufacturing technologies have moved along and have made giant strides towards the production of quality parts and might not be the preferred choice for some prototypes due to higher costs.So, what is the difference between rapid prototyping and 3D printing?
Npd stage types
In modern-day engineering product design, prototyping process of build, review and refine, fits into all four major stages of the design process (product planning, conceptual design, embodiment design and detailed design).

- Proof of concept prototypes
- Demonstration or presentation model prototypes
- Functional prototypes
- Aesthetic or industrial design prototypes
- Final factory sample
- Alpha & beta build prototypes
Types of prototypes in product design
Prototypes can be categorised depending on the degree of accuracy required i.e. “Fidelity” or where in the product development stage it is used.
Types of rapid prototyping techniques
Choosing the right rapid prototyping technology is critical to the success of a prototype. Each rapid prototyping technique has its own compromise in terms of cost, speed, material compatibility of the feature, fidelity level and development stage.
Rapid prototyping doesn’t need to be limited to one process, one can use more than one manufacturing techniques to assemble a prototype.
Following are the types of rapid prototyping technology available for engineering product designers:
What is rapid prototyping?
Rapid prototype or rapid prototyping is a relatively new term and in its simplest form, the process of creating prototypes quickly to visually and functionally evaluate an engineering product design.
Careful consideration of the 5 key factors, viz. purpose, quality, quantity, complexity and cost would have a major impact on the prototyping success.
Why is rapid prototyping important?
In this fast-moving modern-day consumer market, companies need to develop and introduce new products faster to remain competitive. Since faster product development and technology innovation are key to a company’s success, rapid prototyping becomes the most important element of new product development. The following objectives are achieved through rapid prototyping.
Задачи и сферы применения
3D-печать прототипов позволяет оптимизировать выполнение таких задач, как проектирование и модернизация модели, проверка на собираемость, визуальное представление детали или проекта, макетирование и тестирование для более оперативного запуска новых моделей.
С помощью 3D-принтера отдельно решается задача создания прототипов при изготовлении корпусов различных изделий для проверки на собираемость и функционального тестирования. Также возможна 3D-печать готовых корпусных изделий для применения на производстве.
Технология быстрого прототипирования применяется в следующих областях:
Быстрое прототипирование используется для изготовления как наглядных моделей, которые служат для визуализации идеи продукта и дают возможность оценить и усовершенствовать дизайн, так и функциональных прототипов, позволяющих ускорить реверс-инжиниринг и изготовление деталей, снятых с производства.
С помощью 3D-принтера можно быстро и экономично печатать прототипы обоих видов. 3D-печать помогает оперативно получить прототип с оригинала изделия или с CAD-модели. Точность печати обеспечивает максимальное соответствие изделий данным САПР, что обеспечивает высокое качество печати.
Благодаря многообразию термопластиков, композитов, полимеров, фотополимеров и других инновационных материалов для 3D-печати пользователь сможет создать изделие именно с теми физико-механическими свойствами и внешним видом, которые необходимы для решения конкретных задач.
Какие технологии и оборудование используются для 3d-печати прототипов
Для решения задач быстрого прототипирования в основном применяются следующие аддитивные технологии:
Наша компания предлагает широкий выбор оборудования для 3D-печати прототипов от ведущих производителей:
Примеры быстрого прототипирования
Задача: прототипирование компонентов гоночных мотоциклов с целью улучшить конструкцию, аэродинамику, а также комфорт гонщиков при подготовке к чемпионату мира MotoGP.
Итоги: кратко
Время – самый дефицитный ресурс современного предприятия. Сэкономить время на изготовление и оценку физической модели продукта, сократить процесс разработки и воспользоваться изменениями на рынке для приобретения клиентов поможет быстрое прототипирование с использованием 3D-печати.
Широкие возможности аддитивных технологий и большой выбор оборудования и расходных материалов позволяют найти подходящее решение в самых разных областях применения и получить высокоточные и прочные модели в кратчайшие сроки.
Опытные эксперты компании iQB Technologies проконсультируют вас по вопросам, связанным с внедрением 3D-технологий, и предложат готовые 3D-решения для вашего предприятия, НИИ или вуза.